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Abstract.

The estimation of demand is a fundamental aspect of various economic problems, espe-
cially when dealing with extensive and complex data. In this context, two key objectives
have emerged:incorporating unstructured data into demand estimation settings, and ad-
dressing endogeneity concerns inherent in observational data. Traditional models, such
as Berry’s , heavily rely on parameterization and the availability of exogenous variations
for identification. However, Edvard et al. introduced a novel approach inspired by the
partial identification literature, termed the Deep Causal Inequalities (RDeepCI) estimator,
which effectively tackles these challenges. Unlike conventional methods, the RDeepCI
estimator leverages inferred moment inequalities derived from agents’ observed behavior,
allowing us to overcome endogeneity issues associated with explanatory variables. The
authors provide theoretical guarantees, demonstrating the estimator’s consistency under
mild conditions. Additionally, they propose an enhanced analytical and statistical esti-
mation rate applicable to diverse hypothesis spaces, showcasing its capability to achieve
precise and efficient estimation. Finally, the practical application of the refined estima-
tor is demonstrated in demand estimation scenarios involving both low-dimensional and
high-dimensional unstructured data. The code is available Here.
Keywords: Partial Identification, Adversarial Estimation, Non-parameterics, Causal Learn-
ing, Demand Estimation

1

https://github.com/LIQiushui2427/DeepCI


International Conference on Research in Business, Management
and Economics (ICRBME)

1. Introduction

Supervised machine learning algorithms aim to learn output labels based on a set of ex-
planatory variables. However, there are cases where the explicit output variable is unavail-
able, and researchers must infer the output labels based on their discretion. For example,
when consumers choose among multiple products, the researcher may only have access to
the final choices and product characteristics. In such scenarios, a common task is to con-
struct a model that predicts the probability of a product being chosen based on its attributes.
Conventional approaches use binary choices as output labels and product characteristics as
explanatory variables. However, these blackbox methods often overlook important infor-
mation, such as the characteristics of other products in the choice set, leading to subpar re-
sults. (Andrews and Guggenberger, 2009) To address these issues, researchers (McFadden
and Train, 2000) have relied on parametric assumptions about the choice-making process.
However, these assumptions limit the range of explainable data generating processes and
fail to address endogeneity issues with explanatory variables (Berry et al., 1995). Recent
studies in partial identification (Andrews and Guggenberger, 2009)(Ciliberto and Tamer,
2009) have shown that utilizing the revealed preferences of agents can yield improved pre-
dictions. (Pakes et al., 2015) propose an approach where inequalities are constructed based
on the observed behavior of agents to estimate their preference parameters. For instance,
in the consumer product choice example, if a consumer chooses a particular product from
a given set of options, it implies that the expected utility from that product is higher than
that of every other product in the set. However, existing partial identification literature
relies on strong parametric assumptions about target functions and scales poorly with the
dimensionality of explanatory variables.

Another common issue with observational data is the endogeneity of explanatory vari-
ables. Recent studies have demonstrated the limitations of supervised machine learning
algorithms when dealing with endogeneity. For instance, the XGBoost method exhibits
significant bias and struggles to learn the true underlying function in the presence of sub-
stantial endogeneity .

To overcome these challenges, we propose a nonparametric approach called deep
causal inequalities. This method utilizes an adversarial estimator to learn the choice func-
tion and constructs inequalities from observed consumer choices to address endogene-
ity issues effectively. Our approach outperforms existing parametric partial identification
methods and is applicable to high-dimensional unstructured data.
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2. Literature Review

Our work intersects with three streams of literature. Firstly, we contribute to the literature
on partial identification and moment inequalities. Partial identification approaches offer
more flexibility in applied problems by relaxing restrictive assumptions. They address is-
sues such as multiple equilibria in static games without specifying equilibrium selection
rules (Tamer, 2003)(Ciliberto and Tamer, 2009), accommodate flexible specifications of
fixed effects (Ho and Pakes, 2014), handle interval data (Manski and Tamer, 2002), and
enhance the robustness of econometric models in a data-driven manner. General methods
for set inference with inequality restrictions as moments have been proposed by (Bugni,
2010), (Andrews and Soares, 2010) (Pakes et al., 2015) discuss the application of mo-
ment inequalities and the inference of economically interpretable estimators in industrial
organization problems.

Secondly, our paper contributes to the emerging literature on causal machine learn-
ing. Recent machine learning studies have focused on addressing the issue of endogenous
explanatory variables by utilizing available exogenous data (instrumental variables) and
solving nonparametric instrumental variable regression problems. Approaches such as
linear projections on basis functions (Blundell et al., 2007), nonparametric estimation of
conditional distributions (Darolles et al., 2011)(Hall and Horowitz, 2005), and deep gen-
erative models(Hartford et al., 2017) have been proposed.(Singh Amandeep and Jiding,
2021) introduce a kernel IV estimator based on conditional mean embedding, and (Muan-
det et al., 2020) focus on the dual problem and employ a single kernel ridge regression.
However, both approaches suffer from the curse of dimensionality.

Lastly, our work is connected to the broader literature on supervised machine learning.
In applied work, it has been noted that implicit labeling can exclude valuable information
and lead to inferior predictive outcomes. Additionally, if the data includes endogenous
explanatory variables, the performance of supervised machine learning algorithms can be
further degraded. We demonstrate how our method overcomes these challenges, yielding
superior predictive outcomes that can also be interpreted causally.

The rest of the paper is organized as follows: Section 2 provides a brief overview of
examples where inequalities can be derived from observed data and how careful construc-
tion can mitigate endogeneity issues. Section 3 outlines the formal problem setup and the
RDeepCI procedure. The theoretical properties of our RDeepCI estimator are presented
in Section 4. The numerical performance of our algorithms is illustrated in Section 5.
Finally, Section 6 concludes.
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3. Constructing Moment Inequalities: Preference and Discrete Choices

Estimating individuals’ preferences holds significant importance across various domains.
In marketing, demand analysis plays a crucial role in quantifying consumer responses to
policies and forecasting the impact of interventions. This heavily relies on understand-
ing the underlying consumer preference model (Chintagunta and Nair, 2011). Discrete
choice models, in particular, have gained popularity due to their ability to capture category
choices effectively and offer straightforward interpretations.

The fundamental concept behind discrete choice models is to align observed choice
probabilities with individuals’ utility models, accounting for unobserved errors that are
unknown to the econometrician. Traditional models of discrete choice heavily rely on
assumptions regarding the structure of these unobserved errors. For instance, the logit
model assumes that the unobserved error follows the type I extreme value distribution,
which imposes restrictions on the model.

Products possess various characteristics that individuals can observe but may go unno-
ticed by researchers. For instance, when analyzing ready-to-eat cereal choices, customers
consider factors beyond nutritional information, price, size, and brand, which are typically
controlled for explicitly. Additionally, detailed product information may not be accessible
to researchers due to confidentiality concerns.

3.1 The Utility Model for Choices
Assume the utility of consumer i choosing product j in market t is

uijt = kX
(1)
ijt + h(k)(X

(2)
ijt ) + ηjt + ϵjt (1)

We model the effect of observable product features (depending on the customer-product
pair) X(1)

ijt on the utility of purchasing. We divide such features into two channels: X
(1)
ijt

and X
(2)
ijt . X

(1)
ijt ∈ R enters the utility function in a linear way. A typical example is the

personalized price of products. X(2)
ijt ∈ X represent the rest of features that contributes to

the utility in a potentially nonlinear way through h(k) as a relative measure to k. We drop
the superscript (k) in the rest of the paper for notational simplicity.

In the utility model, there are two terms capturing the idiosyncratic errors that are ob-
served by customers when making choices but not by the researcher: ηjt and ϵijt. ηjt could
be interpreted as the collection of customer-invariant latent product characteristics, and it
is allowed to be correlated with the observable product characteristics. ϵijt captures the
rest of the randomness, and we only impose rather weak assumptions on its distribution.
We defer the discussion on such assumptions to later sections.
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3.2 Constructing Moment Inequalities through Revealed Preference
Revealed preference from customer i choosing j over j ′ in market t implies:

uijt ≥ uij′ t ⇐⇒ kX
(1)
ijt + h(X

(2)
ijt ) + ηjt + ϵijt ≥ kX

(1)

ij′ t
+ h(X

(2)

ij′ t
) + ηj′ t + ϵij′ t

⇐⇒ k(X
(1)
ijt −X

(1)

ij′ t
) + h(X

(2)
ijt )− h(X

(2)

ij′ t
) + (ηjt − ηj′ t)

+ (ϵijt − ϵij′ t) ≥ 0

(2)

Note the inequalities above could not be used to construct moment conditions directly,
as ηjt’s are unobserved and could be correlated with Xijt’s. To deal with the unknown
ηjt−ηj′ t , the key idea is to find another potentially different customer i′ such that customer
i
′ chooses j ′ over j in the same market t:

k(X
(1)

i′j′ t
−X

(1)

i′jt
) + (h(X

(2)

i′j′ t
)− h(X

(2)

i′jt
)) + (ηj′ t − ηjt) + (ϵi′j′ t − ϵi′jt) ≥ 0 (3)

Summing up inequalities 2 and 3 effectively differences out the product unobservables
ηjt and ηj

′
t :

k(X
(1)

i′j′ t
−X

(1)

i′jt
+X

(1)
ijt −X

(1)

ij′ t
) + (h(X

(2)

i′j′ t
)− h(X

(2)

i′jt
) + h(X

(2)
ijt )− h(X

(2)

ij′ t
))+

(ϵi′j′ t − ϵi′jt + ϵijt − ϵij′ t) ≥ 0
(4)

Further taking expectation on both sides and utilize the calculation principle of expec-
tation, we get:

k(E(X(1)

i′j′ t
−X

(1)

i′jt
+X

(1)
ijt −X

(1)

ij′ t
)) + E(h(X(2)

i′j′ t
)− h(X

(2)

i′jt
) + h(X

(2)
ijt )−

h(X
(2)

ij′ t
) + E(ϵi′j′ t − ϵi′jt + ϵijt − ϵij′ t) ≥ 0

(5)

we claim that:
E(ϵi′j′ t − ϵi′jt + ϵijt − ϵij′ t) ≤ 0, (6)

holds, with the intuition that choosing someone else’s product increases randomness is
higher when individuals choose products not of their own creation. Hence we reduce (4 to
our key inequality in the population to construct moments for inference on f :

E(kX(1)

i′j′ t
− kX

(1)

i′jt
+ kX

(1)
ijt − kX

(1)

ij′ t
) + E(hX(2)

i′j′ t
− hX

(2)

i′jt
+ hX

(2)
ijt − hX

(2)

ij′ t
) ≥ 0 (7)
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We note that, there is no need of further structural assumptions of ϵijt, and the assump-
tion of E(ϵi′j′ t − ϵi′jt + ϵijt − ϵij′ t) ≤ 0 is rather weak. For instance, E(ϵijt) = 0, for all
i, j, t would satisfy this condition, and it is very common to assume the idiosyncratic error
has (unconditional) mean zero.

Constructing moment inequalities through revealed preference can be applied to broader
settings where the structure of unobserved characteristics are more complicated. For ex-
ample, in a hospital choice setting, (Ho and Pakes, 2014 allows for qualities of each hos-
pital to differ according to the severity of patients. The inequality method handles such
settings by finding pairs to difference out the fixed effects and constructing inequalities as
moments inferred from individuals’ choices.

3.3 Instruments and Selection of Moments
In traditional settings of using moment inequalities for demand estimation, one major
challenge is under-identification. In these settings, we find ĥ such that the empirical analog
of(7 holds, with h replaced by ĥ ∈ H

1

|{i, i′ , j, j ′}|
∑

(i,i
′
,j,j

′
)

(kX
(1)

i′j′ t
− kX

(1)

i′jt
+ kX

(1)
ijt − kX

(1)

ij′ t
)

+
1

|{i, i′ , j, j ′}|
∑

(i,i
′
,j,j

′
)

(ĥX
(2)

i′j′ t
− ĥX

(2)

i′jt
+ ĥX

(2)
ijt − ĥX

(2)

ij′ t
) ≥ 0

(8)

However, even if we restrict H to be the class of linear functions(i.e., let h(X; θ) =
Xθ) there can be a very large set of parameters that satisfy the moment conditions. To see
this, notice the empirical analog

1

|{i, i′ , j, j ′}|
∑

(i,i
′
,j,j

′
)

(kX
(1)

i′j′ t
− kX

(1)

i′jt
+ kX

(1)
ijt − kX

(1)

ij′ t
)

+
1

|{i, i′ , j, j ′}|
∑

(i,i
′
,j,j

′
)

(X
(2)

i′j′ t
−X

(2)

i′jt
+X

(2)
ijt −X

(2)

ij′ t
)θ ≥ 0

(9)

defines a hyperplane. Hence, the set of θ’s that satisfy the condition above is a half
space, which is unbounded and hard to interpret from an empirical standpoint.

Practically, a common solution is to introduce “instruments” to create more moments
(i.e., resctrictions). Consider instruments set {Zijt, Zij′ t, Zi′jt, Zi′j′ t}, such that
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E
[
ϵijt − ϵij′ t + ϵi′j′ t − ϵi′jt|(Zijt, Zij′ t, Zi′jt, Zi′j′ t)

]
≤ 0 (10)

Such condition is analogous to the standard exclusion restriction E(ϵ|Z) = 0 for in-
struments in Generalized Methods of Moments (GMM), but is weaker.

For any f(Zijt, Zij′ t, Zi′jt, Zi′j′ t) ≥ 0, we multiply f(Zijt, Zij′ t, Zi′jt, Zi′j′ t) on both
sides of (4 and take the expectation w.r.t. the data generating process, this inequality should
still hold:

E
[
f(Zijt, Zij′ t, Zi′jt, Zi′j′ t)× [(kX

(1)

i′j′ t
− kX

(1)

i′jt

+ kX
(1)
ijt − kX

(1)

ij
′
t
) + (hX

(2)

i
′
j
′
t
− hX

(2)

i
′
jt
+ hX

(2)
ijt − hX

(2)

ij′ t
)]
]

+ E[f(Zijt, Zij′ t, Zi′jt, Zi′j′ t)(ϵijt − ϵij′ t + ϵi′j′ t − ϵi′jt)] ≥ 0

(11)

Given 11, we have

m(h, f) := E[f(Zijt, Zij′ t, Zi′jt, Zi′j′ t)× ((kX
(1)

i′j′ t
− kX

(1)

i′jt
+ kX

(1)
ijt

−kX(1)

ij′ t
) + (hX

(2)

i′j′ t
− hX

(2)

i′jt
+ hX

(2)
ijt − hX

(2)

ij′ t
))] ≥ 0

(12)

Since the inequality above holds for any f(Zijt, Zij′ t, Zi′jt, Zi′j′ t) ≥ 0, there are es-
sentially infinite number of moments that f should satisfy. In applied research, however,
usually specific instruments and structural forms of h functions are chosen for estimation.
For example, let Zijt = Xijt, Zij′ t = Xij′ t and f(Zijt, Zij′ t, Zi′jt, Zi′j′ t) = (Zijt − Zij′ t)+
(Ho and Pakes, 2014). Such choices, while reasonable, can be subjective and may fail to
incorporate informative bounds.

Our approach uses a minimax objective to reduce the subjectivity of choosing f . For
F → R+, we define the identified function f0 as:

f0 = arg inf
h∈H

sup
f∈F

m(h, f) (13)

where x = max{−x, 0} is the negative part to penalize the violation of inequality ??.

3.4 The RDeepCI Estimator
3.4.1 Prelude

We set X = (Xijt, Xij′ t, Xi′jt, Xi′j′ t) and Z = (Zijt, Zij′ t, Zi′jt, Zi′j′ t).Please note that X
and Z are not necessarily synonymous, as supply shifters can be considered as a compo-
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nent of Z. The critical radius of a function class F with range in [−1, 1] is defined as any
solution δn to the inequality:

R(δ;F) ≤ δ2 with : R(δ;F) = E

[
sup

f∈F :∥f∥2≤δ

1

n

n∑
i=1

ϵif(Xi)

]
(14)

where ϵ1:n is independent Rademacher random variable drawn in {−1, 1} with equal prob-
ability. For pairs of individuals and products (ij, i

′

l, jl, j
′

l)
n
l=1 that are constructed from the

procedure in Section 3.2(???) and the corresponding product characteristics and instru-
ments, we define the sample moment as

m(h, f) :=
1

n

n∑
i=1

[
f(Zijt, Zij′ t, Zi′jt, Zi′j′ t)×

(
(kX

(1)

i′j′ t
− kX

(1)

i′jt
+ kX

(1)
ijt

−kX(1)

ij′ t
) + (hX

(2)

i′j′ t
− hX

(2)

i′jt
+ hX

(2)
ijt − hX

(2)

ij′ t
)
)] (15)

which is the empirical analog of (12). Our RDeepCI estimator optimizes the empirical
analog of (13), potentially adding norm-based penalties Φ : F → R+ andR : H → R+.

3.4.2 Assumptions

Given these assumptions, we can resonably deduce ∀f ∈ F is differentiable.
Assumption 1 F has vanishing Rademacher complexity:

E

[
sup

f∈F :∥f∥2≤δ

1

n

n∑
i=1

ϵif(Xi)

]
→ 0

Assumption 2 The moment function m is Lipschitz

∃γj : ∀f1, f2 ∈ F , |mj(f1)−mj(f1)| ≤ γj|f1 − f2|.

Assumption 3 (i)F is a class of bounded functions, i.e. supf∈F∥f∥F
is a bounded random variable.
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3.4.3 Formal definition:

The RDeepCI estimator is defined as:

ĥ := arg inf
h∈H

sup
f∈F

m(h, f) − λnΦ(f) + µnR(h) (16)

4. Simulations

In this section, we evaluate and present the performance of our deep causal inequalities
method. We conduct simulations of consumer choices based on the utility model 1, where
k is normalized to one

uijt = X
(1)
ijt + f(X

(2)
ijt ) + ηjt + ϵijt. (17)

Subsequently, we employ the RDeepCI method to estimate the latent utility functions
of consumers, which were previously unknown. Consequently, we are able to predict the
likelihood of an item being chosen based on its observable attributes. This approach allows
us to gain practical insights into the impact of price discounts or markups on consumer
demand.

In this example, we describe how demand estimation can be carried out in markets
with differentiated products with highly unstructured data like images. To conduct this
simulation, we use the MNIST dataset (LeCun et al., 1998). It is a labelled dataset of
60,000 small gray-scale images with hand-written digits within them, where the size of
each image is 28 × 28. To test the efficiency of our method, we consider the following
simulation design:

We assume the utility a consumer i gets by purchasing a good j in market t is given by

uijt = X
(1)
ijt + ϕ(Imageijt) + ηjt + ϵijt (18)

For each product, consumers view some attributes and the product’s image. In our
simulation, there is a one-dimensional product feature (X(1)

ijt ), e.g., price. The product
image, on the other hand, is randomly drawn from the MNIST dataset.

5. Experiments

Our experimental procedures align with the defined Utility functions. To execute these
experiments, we apply the RDeepCI estimator in conjunction with the PPHI estimator, as
outlined in (Pakes et al., 2015), utilizing a linear specification for the moment inequali-
ties. Additionally, the PolyPPHI estimator incorporates a polynomial function of degree 2
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as the moment function. In order to compare the performance of the RDeepCI estimator
with the PPHI and PolyPPHI estimators, we evaluate various metrics including RMSE,
MSE, MAE, MAPE, and bias. Across all examined specifications, the RDeepCI estimator
consistently exhibits significantly superior performance compared to the other estimators.
Moreover, as the number of products in the choice set increases, the estimators demon-
strate improved performance.

5.1 Deriving RDeepCI exstimator for simulation
The RDeepCI estimator is trained and derived using a Generative Adversarial Network
(GAN) network, as discussed in (Creswell et al., 2018).

The employed framework comprises two neural networks: one network aims to learn
image classification by generating output labels, while the other network endeavors to
generate deceptive images. Given the simplicity of the data, both the learner and adver-
sarial networks are constructed using Multilayer Perceptrons, incorporating activation and
softmax layers.
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Figure 1: Sturcture for learner net. The learner will receive input in 1x784 shape, and
output it’s classification. For MNIST dataset, the output is 0-9, along with a fake indicator,
indicating the image is not representing any number.
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Figure 2: Structure for adversary net. Given a random noise, It will try to generate a fake
image.

12



International Conference on Research in Business, Management
and Economics (ICRBME)

Figure 3: Structure for our training process. As principles of GAN, the gain of Adversary
net is just the loss of the learner. And the learner will also be enhanced during training.
The G refers to the adversary net (2),and the D refers to the learner net (1).

We just use this GAN to show the efficiency of our loss function following below man-
ner, as the definition introduced on 15.
Note that the calculation of m involves the discrimination of learner net and fake image
generation by adversary net. After we calculate it, we can already do back propagation to
one particular net in an asynchronously way. Combining the simulated data and truth data,
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the GAN will train the learner with the assistence of the true data, where simulated data
(derived in random process) served as a renforcement and supplement.
The overall training process can be illustrated using following algorithm:

Algorithm 1 Asynchronous progressive training
Require: f is in Lipschitz continuous
Ensure: m follow the definition in 15.

while N ≤ number of training iterations do
if N mod train learner cycle = 0 then
∇θG max(0, (α

∑n
i=1(max(0,−m)2 − β

∑n
i=1(k(X

(1)
ijt − X

(1)

ij′ t
) + h(X

(2)

i′jt
−

X
(2)

i′j′ t
)))

end if
if N mod train adversry cycle = 0 then
∇θD2

∑n
i=1(max,−m)

end if
N ← N + 1

end while

Where α and β are hyperparameters of the model, and train learner cycle and train learner cycle
control the frequency when the learner and the adversary net are iterated.

5.2 Single-Variate Utility Functions

For the first part of experiments, We perform a simple simulation, where X
(2)
ijt ∈ R and f

is a single-variate function.
Assumption: Formally, we assume that:

1. There are T = 1 geographic markets.

2. Each market has J products.

3. Customers choose one products among J products, which gives them the highest
utility.

For t = 1, 2,..., T and j = 1, 2, ..., J , we simulate X
(1)
ijt ∼ U(−1, 1), X(2)

ijt = ρejt +
U(−5, 5) where ejt ∼ N(0, 0.5). We also let ηjt = ejt and ϵijt ∼ N(0, 3). Note, the
extent of endogeneity is measured by the parameter ρ: it creates a correlation between
the unobserved product characteristic ηjt and the observed feature X

(2)
ijt . Further, in the

simulation, we focus on the following structural functions of h(x):
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• abs: h(x) = 2(∥x| − 2| − 1.5)

• sin: h(x) = 2sin(x)

• log: h(x) = 2ln(|x|)

• step: h(x) = 2sgn(∥x| − 5| − 2, where sgn(x) = 2× 1(x ≥ 0)− 1

The summarized results of these estimators can be found in Table A.

5.3 Experiments for Utility Function with Image Data
In the following part of experiments, we assume the utility component from the image is
the digit written in that image captured by the function ϕ. In the simulation, we assume that
consumer chooses the product that gives them the maximum utility. The task is to recover
the function ϕ. To simulate the consumer choice data we assume X

(1)
ijt ∼ U(−1, 1); ϵijt ∼

N(0, 3); ηjt ∼ N(0, 0.5). We assume the utility a consumer i gets by purchasing a good j
in market t is given by

uijt = X
(1)
ijt + ϕ(Imageijt) + ηjt + ϵijt (19)

For both f and h, we utilized a pre-trained MLP with a simple structure consisting
of three fully connected layers. Given that our experimental dataset is MNIST, employing
excessively powerful models may not effectively demonstrate the efficacy of our approach.

Our experiments demonstrate that our approach enables the MLP to overcome overfit-
ting on the MNIST dataset, resulting in higher accuracy. Additionally, we observe from
different loss functions that the application of RDeepCI leads to reduced loss in the testing
phase of the model during data evaluation. The result in B showcase the efficiency of our
loss criterion (as introduced in 15) and training process (as introduced in 1).

6. Conclusion

In this study, we build upon the original work by (Singh Amandeep and Jiding, 2021)
and present significant improvements in the form of RDeepCI. Our proposed estimator
addresses the challenges posed by endogeneity and the inclusion of highly unstructured
data. We demonstrate the consistency of our method under mild conditions. To assess its
effectiveness, we conduct extensive numerical experiments, consistently showcasing the
superior performance of RDeepCI compared to standard approaches. Furthermore, we ap-
ply our method to real-world data, successfully addressing issues related to endogeneity
and high-dimensionality.
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However, our method does have certain limitations. Specifically, we do not provide any
inference results for the estimated functional sets, which we believe presents an avenue
for future research. Hence, our method does have certain limitations that warrant con-
sideration. Additionally, our current approach to set construction for functional is more
complicated than original one. Furthermore, we implement the potential for a more so-
phisticated approach by formulating the problem as a bi-level optimization problem. This
avenue presents an exciting direction for future research and an opportunity to further
extend the impact of our work.
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A. Low Dimensional

Low-Dimensional Case
Metric J function PPHI PolyPPHI RDeepCI
RMSE 5 abs 1.09 0.85 0.27
RMSE 10 abs 1.10 0.85 0.28
RMSE 5 sin 1.06 0.62 0.45
RMSE 10 sin 1.06 0.62 0.26
RMSE 5 log 2.17 1.25 1.67
RMSE 10 log 2.17 1.25 1.73
RMSE 5 step 1.22 1.08 0.45
RMSE 10 step 1.22 1.08 0.40
MSE 5 abs 0.07 0.07 0.08
MSE 10 abs 0.08 0.08 0.08
MSE 5 sin 0.16 0.16 0.22
MSE 10 sin 0.10 0.10 0.07
MSE 5 log 2.84 2.84 2.81
MSE 10 log 2.91 2.91 2.97
MSE 5 step 0.17 0.17 0.20
MSE 10 step 0.19 0.19 0.16
MAE 5 abs 1.01 0.79 0.22
MAE 10 abs 1.01 0.79 0.23
MAE 5 sin 0.99 0.53 0.35
MAE 10 sin 0.99 0.53 0.21
MAE 5 log 1.96 1.02 1.30
MAE 10 log 1.96 1.02 1.43
MAE 5 step 1.21 1.03 0.35
MAE 10 step 1.21 1.03 0.29
MAPE 5 abs 146.26 117.68 138.39
MAPE 10 abs 146.26 117.68 168.45
MAPE 5 sin 247.39 262.83 992.97
MAPE 10 sin 247.39 262.83 267.78
MAPE 5 log 138.29 99.11 115.47
MAPE 10 log 138.29 99.11 217.15
MAPE 5 step 121.42 102.61 34.53
MAPE 10 step 121.42 102.61 28.70
bias 5 abs -0.21 -0.07 0.02
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bias 10 abs -0.25 -0.12 -0.05
bias 5 sin 0.33 -0.18 -0.16
bias 10 sin -0.23 -0.06 0.01
bias 5 log -0.91 -0.65 -0.57
bias 10 log -1.04 -0.81 -0.78
bias 5 step -0.55 -0.40 -0.20
bias 10 step -0.52 -0.37 -0.16

B. Image Dimensional

High-Data Case
Metric function Pretained Net RDeepCI
Cross-Entropy abs 0.7466 0.7456
Cross-Entropy sin 0.7468 0.7451
Cross-Entropy log 0.7477 0.7460
Cross-Entropy step 0.7423 0.7408
Focal abs 0.4499 0.4488
Focal sin 0.4502 0.4481
Focal log 0.4512 0.4492
Focal step 0.4449 0.4431
Test loss abs 0.9572 0.9562
Test loss sin 0.9574 0.9557
Test loss log 0.9582 0.9566
Test loss step 0.9529 0.9514
Accuracy abs 97.85% 98.02%
Accuracy sin 97.64% 97.94%
Accuracy log 97.83% 98.10%
Accuracy step 97.75% 98.08%
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